Space: Science & Technology (Jan 2021)

Application Prospect of Fission-Powered Spacecraft in Solar System Exploration Missions

  • Y. Xia,
  • J. Li,
  • R. Zhai,
  • J. Wang,
  • B. Lin,
  • Q. Zhou

DOI
https://doi.org/10.34133/2021/5245136
Journal volume & issue
Vol. 2021

Abstract

Read online

Fission power is a promising technology, and it has been proposed for several future space uses. It is being considered for high-power missions whose goal is to explore the solar system and even beyond. Space fission power has made great progress when NASA’s 1 kWe Kilowatt Reactor Using Stirling TechnologY (KRUSTY) prototype completed a full power scale nuclear test in 2018. Its success stimulated a new round of research competition among the major space countries. This article reviews the development of the Kilopower reactor and the KRUSTY system design. It summarizes the current missions that fission reactors are being considered as a power and/or propulsion source. These projects include visiting Jupiter and Saturn systems, Chiron, and Kuiper belt object; Neptune exploration missions; and lunar and Mars surface base missions. These studies suggest that the Fission Electric Propulsion (FEP)/Fission Power System (FPS) is better than the Radioisotope Electric Propulsion (REP)/Radioisotope Power System (RPS) in the aspect of cost for missions with a power level that reaches ~1 kWe, and when the power levels reaches ~8 kWe, it has the advantage of lower mass. For a mission that travels further than ~Saturn, REP with plutonium may not be cost acceptable, leaving FEP the only choice. Surface missions prefer the use of FPS because it satisfies the power level of 10’s kWe, and FPS vastly widens the choice of possible landing location. According to the current situation, we are expecting a flagship-level fission-powered space exploration mission in the next 1-2 decades.