Open Access Journal of Sports Medicine (Jun 2015)

Suture locking of isolated internal locking knotless suture anchors is not affected by bone quality

  • Woodmass JM,
  • Matthewson G,
  • Ono Y,
  • Bois AJ,
  • Boorman RS,
  • Lo IK,
  • Thornton GM

Journal volume & issue
Vol. 2015, no. default
pp. 201 – 208

Abstract

Read online

Jarret M Woodmass,1 Graeme Matthewson,1 Yohei Ono,1,2 Aaron J Bois,1 Richard S Boorman,1 Ian KY Lo,1 Gail M Thornton1,31Department of Surgery, Section of Orthopaedic Surgery, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada; 2Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan; 3Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada Purpose: The purpose of this study was to evaluate the mechanical performance of different suture locking mechanisms including: i) interference fit between the anchor and the bone (eg, 4.5 mm PushLock, 5.5 mm SwiveLock), ii) internal locking mechanism within the anchor itself (eg, 5.5 mm SpeedScrew), or iii) a combination of interference fit and internal locking (eg, 4.5 mm MultiFIX P, 5.5 mm MultiFIX S). Methods: Anchors were tested in foam blocks representing normal (20/8 foam) or osteopenic (8/8 foam) bone, using standard suture loops pulled in-line with the anchor to isolate suture locking. Mechanical testing included cyclic testing for 500 cycles from 10 N to 60 N at 60 mm/min, followed by failure testing at 60 mm/min. Displacement after 500 cycles at 60 N, number of cycles at 3 mm displacement, load at 3 mm displacement, and maximum load were evaluated. Results: Comparing 8/8 foam to 20/8 foam, load at 3 mm displacement and maximum load were significantly decreased (P<0.05) with decreased bone quality for anchors that, even in part, relied on an interference fit suture locking mechanism (ie, 4.5 mm PushLock, 5.5 mm SwiveLock, 4.5 mm MultiFIX P, 5.5 mm MultiFIX S). Bone quality did not affect the mechanical performance of 5.5 mm SpeedScrew anchors which have an isolated internal locking mechanism. Conclusion: The mechanical performance of anchors that relied, even in part, on interference fit were affected by bone quality. Isolated internal locking knotless suture anchors functioned independently of bone quality. Anchors with a combined type (interference fit and internal locking) suture locking mechanism demonstrated similar mechanical performance to isolated internal locking anchors in osteopenic foam comparing similar sized anchors. Clinical relevance: In osteopenic bone, knotless suture anchors that have an internal locking mechanism (isolated or combined type) may be advantageous for secure tendon fixation to bone. Keywords: suture locking, knotless suture anchors, bone quality