Ecology and Evolution (Jun 2019)

Late Quaternary climate change explains soil fungal community composition rather than fungal richness in forest ecosystems

  • Niu‐Niu Ji,
  • Cheng Gao,
  • Brody Sandel,
  • Yong Zheng,
  • Liang Chen,
  • Bin‐Wei Wu,
  • Xing‐Chun Li,
  • Yong‐Long Wang,
  • Peng‐Peng Lü,
  • Xiang Sun,
  • Liang‐Dong Guo

DOI
https://doi.org/10.1002/ece3.5247
Journal volume & issue
Vol. 9, no. 11
pp. 6678 – 6692

Abstract

Read online

Abstract The dramatic climate fluctuations of the late Quaternary have influenced the diversity and composition of macroorganism communities, but how they structure belowground microbial communities is less well known. Fungi constitute an important component of soil microorganism communities. They play an important role in biodiversity maintenance, community assembly, and ecosystem functioning, and differ from many macroorganisms in many traits. Here, we examined soil fungal communities in Chinese temperate, subtropical, and tropic forests using Illumina MiSeq sequencing of the fungal ITS1 region. The relative effect of late Quaternary climate change and contemporary environment (plant, soil, current climate, and geographic distance) on the soil fungal community was analyzed. The richness of the total fungal community, along with saprotrophic, ectomycorrhizal (EM), and pathogenic fungal communities, was influenced primarily by the contemporary environment (plant and/or soil) but not by late Quaternary climate change. Late Quaternary climate change acted in concert with the contemporary environment to shape total, saprotrophic, EM, and pathogenic fungal community compositions and with a stronger effect in temperate forest than in tropic–subtropical forest ecosystems. Some contemporary environmental factors influencing total, saprotrophic, EM, and pathogenic fungal communities in temperate and tropic–subtropical forests were different. We demonstrate that late Quaternary climate change can help to explain current soil fungal community composition and argue that climatic legacies can help to predict soil fungal responses to climate change.

Keywords