Scientific African (Sep 2024)
Spatio-temporal land use and land cover change assessment: Insights from the Ouémé River Basin
Abstract
The rapid increase in population and urban development are exacerbating the transformation of natural environments into unnatural forms. While detailed assessment of the environment is beneficial for efficient ecosystem system management, it can also be time and resources-consuming. This study aimed to map and quantify the spatio-temporal changes in land use and land cover (LULC) using the Ouémé River Basin as a case study. The supervised classification in Google Earth Engine (GEE) cloud-computing platform was employed to distinguish Landsat images for 1986, 2000, 2015 and 2023 into forest areas, settlements/bare lands, savanna areas (woodlands), agricultural lands and water bodies. Analysis of the LULC changes revealed that savanna areas and woodlands which were predominant in the basin in 1986 have steadily declined by 24 % in area in 2023. Forest areas have diminished by 4.3 % at an annual rate of 4 %. Agricultural lands have however grown exponentially by 28 % since 1986, with a more rapid increase between 2015 and 2023 at an annual rate of 3.7 %, driven by rising food demand due to population growth within and around the basin. Settlements and bare areas tripled in area, reflecting a similar trend to Benin's urban population growth. Accuracy statistics of the LULC classification showed overall accuracy and kappa statistic values above 90 % and 86 %, respectively, indicating the admirable performance and reliability of the Simple Composite Landsat algorithm for image composition, and the Random Forest Classifier for LULC classification approach applied in this study. The approach also demonstrates the robustness and potential of LULC mapping in large and complex ecosystems using the GEE cloud-based remote sensing tool, which is underutilized in the study area. Overall, the LULC trends provide beneficial insights useful to policy-makers and any other stakeholders involved in sustainable ecosystem management planning in the basin.