Journal of Applied and Computational Mechanics (Oct 2020)
Mechanics of 2D Elastic Stress Waves Propagation Impacted by Concentrated Point Source Disturbance in Composite Material Bars
Abstract
Green’s function, an analytical approach in inhomogeneous linear differential equations, is the impulse response, which is applied for deriving the wave equation solution in composite materials mediums. This paper investigates the study of SH wave’s transmission influenced by concentrated point source disturbance in piezomagnetic material resting over heterogeneous half-space. Green function approach is used to solve differential equation and obtain the dispersion relation in determinant form and match with existing classical Love wave equation for the authenticity for the article. The properties of SH wave throughout the considered framework and their state of relying on varied geometrical and physical parameters are scrutinized. The simulated outcomes of disparate physical quantities viz., dimensionless phase velocity, elastic parameter, group velocity, initial stress, piezomagnetic/heterogeneity parameter and stress distribution of SH wave in the considered structure are investigated and used to regulate the behavior of dispersion characteristics of smart material waveguides.
Keywords