Microorganisms (Nov 2022)
Genomics of <i>Klebsiella pneumoniae</i> Species Complex Reveals the Circulation of High-Risk Multidrug-Resistant Pandemic Clones in Human, Animal, and Environmental Sources
Abstract
The Klebsiella species present a remarkable genetic and ecological diversity, being ubiquitous in nature. In particular, the Klebsiella pneumoniae species complex (KpSC) has emerged as a major public health threat in the world, being an interesting model to assess the risk posed by strains recovered from animals and the environment to humans. We therefore performed a genomic surveillance analysis of the KpSC using every public genome in Brazil, aiming to show their local and global relationships, and the connectivity of antibiotic resistance and virulence considering human, animal, and environmental sources. The 390 genomes from distinct sources encompassed the K. pneumoniae, Klebsiella quasipneumoniae subsp. quasipneumoniae, Klebsiella quasipneumoniae subsp. similipneumoniae, Klebsiella variicola subsp. variicola, Klebsiella variicola subsp. tropica, and Klebsiella grimontii species and subspecies. K. pneumoniae harbored dozens of antibiotic resistance genes, while most of the genomes belong to the high-risk pandemic CC258 occurring in humans, animals, and the environment. In K. pneumoniae ST11, a high prevalence of the virulence determinants yersiniabactin, colibactin, and T6SS was revealed in association with multi-drug resistance (MDR), including carbapenem resistance. A diversity of resistance genes is carried by plasmids, some shared between strains from different STs, regions, and sources. Therefore, here were revealed some factors driving the success of KpSC as a pathogen.
Keywords