BMC Cardiovascular Disorders (Sep 2022)
Evaluation of DNA damage induced by ionizing radiation from myocardial perfusion imaging: a pilot study
Abstract
Abstract Background As patient exposure to ionizing radiation raises concern about malignancy risks, this study evaluated the effect of ionizing radiation on patients undergoing myocardial perfusion imaging (MPI) using the comet assay, a method for detection of DNA damage. Methods Patients without cancer, acute or autoimmune diseases, recent surgery or trauma, were studied. Gated single-photon myocardial perfusion imaging was performed with Tc-99m sestamibi. Peripheral blood was collected before radiotracer injection at rest and 60–90 min after injection. Single-cell gel electrophoresis (comet assay) was performed with blood lymphocytes to detect strand breaks, which determine a “comet tail” of variable size, visually scored by 3 observers in a fluorescence microscope after staining (0: no damage, no tail; 1: small damage; 2: large damage; 3: full damage). A damage index was calculated as a weighted average of the cell scores. Results Among the 29 individuals included in the analysis, age was 65.3 ± 9.9 years and 18 (62.1%) were male. The injected radiotracer dose was 880.6 ± 229.4 MBq. Most cells (approximately 70%) remained without DNA fragmentation (class 0) after tracer injection. There were nonsignificant increases of classes 1 and 2 of damage. Class 3 was the least frequent both before and after radiotracer injection, but displayed a significant, 44% increase after injection. Conclusion While lymphocytes mostly remained in class 0, an increase in class 3 DNA damage was detected. This may suggest that, despite a probable lack of biologically relevant DNA damage, there is still a need for tracer dose reductions in MPI.
Keywords