Developments in the Built Environment (Dec 2024)
Innovative design and sensing performance of a novel large-strain sensor for prestressed FRP plates
Abstract
Owing to the low measuring range of traditional fiber Bragg grating (FBG) sensors and the complexity, imprecision, and lack of practicality in existing large-strain sensors, this paper introduces a novel type of large-strain sensor based on pre-relaxation and continuous sensing technology. This design aims to realize the whole-process strain monitoring of prestressed fiber reinforced polymer (FRP) plates. Static tensile tests were conducted on 9 large-strain sensor specimens. The effects of pre-relaxation degree, section number, pre-tension time, and prestressing level were evaluated. The results reveal that, the pre-relaxed sensor, proved its efficacy in capturing the strain pertinent to the post-tensioned operational state of the FRP plate, and a sensing performance of up to 18,923 με can be facilitated and further extended by a pre-relaxation and continuous sensing technique. Moreover, it is recommended that during the fabrication of the large-strain sensor, two pre-tensions be applied, with a prestressing level between 115% and 125% of the pre-relaxation degree.