Applied Sciences (Jan 2023)

Three-Dimensional Numerical Modeling of Artificially Freezing Ground in Metro Station Construction

  • Bo Wang,
  • Jun Hu,
  • Xiaoqi Lin,
  • Hui Zeng

DOI
https://doi.org/10.3390/app13010671
Journal volume & issue
Vol. 13, no. 1
p. 671

Abstract

Read online

In this study, the engineering background of No. 2 complex connecting passage of Binhu Road Station/Jinhu Square Station of Nanning Metro Line 3 is investigated, where the artificial ground freezing technique is adopted. A three-dimensional finite element model is established to investigate the temperature development of the frozen soil curtain, with a simulation of the dynamic evolution of the frosted soil curtain. The finite element model is validated by comparing the overall trend of the measured temperature value and the resulting temperature value, which are roughly the same. According to the design scheme, the weakest part of the whole frozen soil curtain is the top of the bell mouth where the downhole tunnel intersects the connecting passage. It is recommended to make a row of smaller freezing holes to enhance the freezing effect in this area. The thickness of the frozen soil curtain reached 1.75 m or more, indicating that the whole frozen soil curtain meets the design requirements and shows the right features for excavation construction. After freezing for 40 days, the average thickness of the frozen soil curtain is 2.4 m, indicating that the freezing effect meets the design requirements. The project can be successfully carried out, which suggests that the underneath passage construction is feasible. As a result, the results of the numerical model are applicable for comparable projects using artificially freezing ground in metro station construction.

Keywords