Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica (Apr 2024)

On nonnil-S-Noetherian and nonnil-u-S-Noetherian rings

  • Mahdou Najib,
  • Oubouhou El Houssaine,
  • Celikel Ece Yetkin

DOI
https://doi.org/10.2478/auom-2024-0011
Journal volume & issue
Vol. 32, no. 1
pp. 201 – 220

Abstract

Read online

Let R be a commutative ring with identity, and let S be a multiplicative subset of R. Then R is called a nonnil-S-Noetherian ring if every nonnil ideal of R is S-finite. Also, R is called a u-S-Noetherian ring if there exists an element s ∈ S such that for each ideal I of R, sI ⊆ K for some finitely generated sub-ideal K of I. In this paper, we examine some new characterization of nonnil-S-Noetherian rings. Then, as a generalization of nonnil-S-Noetherian rings and u-S-Noetherian rings, we introduce and investigate the nonnilu-S-Noetherian rings class.

Keywords