Nature Communications (Dec 2016)

Osteoblasts secrete Cxcl9 to regulate angiogenesis in bone

  • Bin Huang,
  • Wenhao Wang,
  • Qingchu Li,
  • Zhenyu Wang,
  • Bo Yan,
  • Zhongmin Zhang,
  • Liang Wang,
  • Minjun Huang,
  • Chunhong Jia,
  • Jiansen Lu,
  • Sichi Liu,
  • Hongdong Chen,
  • Mangmang Li,
  • Daozhang Cai,
  • Yu Jiang,
  • Dadi Jin,
  • Xiaochun Bai

DOI
https://doi.org/10.1038/ncomms13885
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Communication between osteoblasts and endothelial cells (ECs) is essential for bone turnover, but the molecular mechanisms of such communication are not well defined. Here we identify Cxcl9 as an angiostatic factor secreted by osteoblasts in the bone marrow microenvironment. We show that Cxcl9 produced by osteoblasts interacts with vascular endothelial growth factor and prevents its binding to ECs and osteoblasts, thus abrogating angiogenesis and osteogenesis both in mouse bone and in vitro. The mechanistic target of rapamycin complex 1 activates Cxcl9 expression by transcriptional upregulation of STAT1 and increases binding of STAT1 to the Cxcl9 promoter in osteoblasts. These findings reveal the essential role of osteoblast-produced Cxcl9 in angiogenesis and osteogenesis in bone, and Cxcl9 can be targeted to elevate bone angiogenesis and prevent bone loss-related diseases.