PLoS ONE (Jan 2023)

Hazard source detection of longitudinal tearing of conveyor belt based on deep learning.

  • Yimin Wang,
  • Changyun Miao,
  • Di Miao,
  • Dengjie Yang,
  • Yao Zheng

DOI
https://doi.org/10.1371/journal.pone.0283878
Journal volume & issue
Vol. 18, no. 4
p. e0283878

Abstract

Read online

Belt tearing is the main safety accident of belt conveyor. The main cause of tearing is the doped bolt and steel in the conveying belt. In this paper, the bolt and steel are identified as the Hazard source of tear. In this paper, bolt and steel are defined as the risk sources of tearing. Effective detection of the source of danger can effectively prevent the occurrence of conveyor belt tearing accidents. Here we use deep learning to detect the hazard source image. We improved on the SSD(Single Shot MultiBox Detector) model. Replace the original backbone network with an improved Shufflenet_V2, and replace the original position loss function with the CIoU loss function. Additionally, it compares this new approach to previous methods. The proposed model has surpassed other state-of-art methods with more than 94% accuracy. In addition, when deployed without GPU acceleration, the detection speed can reach 20fps. It can meet the requirements of real-time detection. The experimental results show that the proposed model can realize the online detection of hazard sources, so as to prevent longitudinal tearing of conveyor belt.