PLoS ONE (Jan 2023)

One single drug-coated balloon for all shapes/diameters? Neointimal proliferation inhibition in porcine peripheral arteries.

  • Stephanie Bienek,
  • Maciej Kusmierczuk,
  • Beatrix Schnorr,
  • Ole Gemeinhardt,
  • Stephanie Bettink,
  • Bruno Scheller

DOI
https://doi.org/10.1371/journal.pone.0280206
Journal volume & issue
Vol. 18, no. 1
p. e0280206

Abstract

Read online

BackgroundLong diseased vessel segments of peripheral arteries may display irregular shapes with different diameters. The aim of this study was to investigate inhibition of neointimal proliferation in porcine peripheral vessels with different diameters covered by one single hyper-compliant drug-coated balloon (HCDCB), compared to conventional drug-coated balloons (DCB), each selected according to the respective vessel diameter.Methods and resultsNeointimal proliferation was stimulated in proximal and distal segments of the peripheral arteries by balloon overstretch and stent implantation. Inhibition of neointimal proliferation by one single HCDCB was compared to two vessel diameter-adjusted DCB per artery and to one single uncoated hyper-compliant balloon (HCB). Sixteen HCB, 16 HCDCB, and 32 DCB were used in 16 arteries each. Quantitative angiography (QA), optical coherence tomography (OCT) and histology showed a similar anti-restenotic effect for one HCDCB compared to two vessel diameter-adjusted DCB in narrow distal and wider proximal segments (QA diameter stenosis: 18.7±12.3% vs. 22.8±15.5%, p = 0.535; OCT area stenosis: 21.4±11.6% vs. 23.6±12.3%, p = 0.850; histomorphometry diameter stenosis: 27.5±7.1% vs. 26.9±8.0%, p = 0.952) and indicated significant inhibition of neointimal proliferation by HCDCB vs. uncoated HCB (QA diameter stenosis: 18.7±12.3% vs. 30.3±16.7%, p = 0.008; OCT area stenosis: 21.4±11.6% vs. 34.7±16.0%, p = 0.004; histomorphometry diameter stenosis: 27.5±7.1% vs. 32.5±8.5%, p = 0.038).ConclusionsHCDCB were found to be similar effective as DCB in inhibiting neointimal proliferation in vessel segments with different diameters. One single long HCDCB may allow for treatment of segments with variable diameters, and thus, replace the use of several vessel diameter-adjusted DCB.