Physical Review X (Aug 2018)

Spreading Processes in Multiplex Metapopulations Containing Different Mobility Networks

  • D. Soriano-Paños,
  • L. Lotero,
  • A. Arenas,
  • J. Gómez-Gardeñes

DOI
https://doi.org/10.1103/PhysRevX.8.031039
Journal volume & issue
Vol. 8, no. 3
p. 031039

Abstract

Read online Read online

We propose a theoretical framework for the study of spreading processes in structured metapopulations, with heterogeneous agents, subjected to different recurrent mobility patterns. We propose to represent the heterogeneity in the composition of the metapopulations as layers in a multiplex network, where nodes would correspond to geographical areas and layers account for the mobility patterns of agents of the same class. We analyze classical epidemic models within this framework and obtain an excellent agreement with extensive Monte Carlo simulations. This agreement allows us to derive analytical expressions of the epidemic threshold and to face the challenge of characterizing a real multiplex metapopulation, the city of Medellín in Colombia, where different recurrent mobility patterns are observed depending on the socioeconomic class of the agents. Our framework allows us to unveil the geographical location of those patches that trigger the epidemic state at the critical point. A careful exploration reveals that social mixing between classes and mobility crucially determines these critical patches and, more importantly, it can produce abrupt changes of the critical properties of the epidemic onset.