Toxins (Feb 2024)

Screening TLR4 Binding Peptide from <i>Naja atra</i> Venom Glands Based on Phage Display

  • Runhan Li,
  • Yezhong Tang,
  • Zening Chen,
  • Yang Liu

DOI
https://doi.org/10.3390/toxins16030113
Journal volume & issue
Vol. 16, no. 3
p. 113

Abstract

Read online

Toll-like receptor 4 (TLR4) is a crucial inflammatory signaling pathway that can serve as a potential treatment target for various disorders. A number of inhibitors have been developed for the TLR4 pathway, and although no inhibitors have been approved for clinical use, most have been screened against the TLR4-MD2 conformation. The venom gland is the organ of venomous snakes that secretes substances that are toxic to other animals. The level of gene transcription in venom glands is different from that in other tissues, includes a large number of biologically active ingredients, and is an important natural resource for the development of new drugs. We constructed a T7 phage display library using the cobra (Naja atra) venom gland from the Guangdong Snake Breeding Plant and performed three rounds of screening with TLR4 as the target, randomly selecting monoclonal phage spots for PCR followed by Sanger sequencing. The obtained sequences were subjected to length analysis, molecular docking, solubility prediction, and stability prediction, and a peptide containing 39 amino acids (NA39) was finally screened out. The BLAST results indicated that NA39 was a sequence in RPL19 (Ribosomal Protein L19). After peptide synthesis, the binding ability of NA39 to TLR4 was verified by the surface plasmon resonance (SPR) technique. In this study, a new peptide that can specifically bind TLR4 was successfully screened from the cobra venom gland cDNA library, further demonstrating the effectiveness of phage display technology in the field of drug discovery.

Keywords