EURASIP Journal on Advances in Signal Processing (Jan 2011)
PAPR reduction in SFBC MIMO MC-CDMA systems via user reservation
Abstract
Abstract The combination of multicarrier code-division multiple access (MC-CDMA) with multiple-input multiple-output technology is attractive for broadband wireless communications. However, the large values of the peak-to-average power ratio (PAPR) of the signals transmitted on different antennas can lead to nonlinear distortion and a subsequent degradation of the system performance. In this article, we propose a PAPR reduction scheme for space-frequency block coding MC-CDMA downlink transmissions that does not require any processing at the receiver side because it is based on the addition of signals employing the spreading codes of inactive users. As the minimization of the PAPR leads to a second-order cone programming problem that can be too cumbersome for a practical implementation, some strategies to mitigate the complexity of the proposed method are also explored.