Atmospheric Measurement Techniques (Apr 2024)

Evaluation of Aeris mid-infrared absorption (MIRA), Picarro CRDS (cavity ring-down spectroscopy) G2307, and dinitrophenylhydrazine (DNPH)-based sampling for long-term formaldehyde monitoring efforts

  • A. P. Mouat,
  • Z. A. Siegel,
  • J. Kaiser,
  • J. Kaiser

DOI
https://doi.org/10.5194/amt-17-1979-2024
Journal volume & issue
Vol. 17
pp. 1979 – 1994

Abstract

Read online

Current formaldehyde (HCHO) measurement networks rely on the TO-11A offline chemical derivatization technique, which can be resource intensive and limited in temporal resolution. In this work, we evaluate the field performance of three new commercial instruments for continuous in situ formaldehyde monitoring: the Picarro cavity ring-down spectroscopy G2307 gas concentration analyzer and Aeris Technologies' mid-infrared absorption Pico and Ultra gas analyzers. All instruments require regular drift correction, which is accomplished through instrument zeroing using dinitrophenylhydrazine (DNPH)-coated cartridges, Drierite, or molecular sieves, while heated Hopcalite failed to remove all incoming HCHO. We show that a modified precision estimate accounting for regular instrument zeroing results in values of 0.09, 0.20, and 0.22 ppb at a 20 min integration time for the G2307, Ultra, and Pico, respectively. After applying standard addition and dynamic dilution calibrations, all instruments agreed within 13 % and were well correlated with each other (all r ≥ 0.90). TO-11A HCHO observations resulted in a normalized mean bias of −58 % compared to co-located Picarro G2307 measurements (r=0.62, slope = 0.38, int = 0.07 ppb HCHO). Using a 6-month deployment period in the Atlanta metropolitan area, we determined that the Picarro G2307 and Aeris units have sufficient accuracy and precision to capture the Atlanta spatial HCHO gradient. We find that midday HCHO concentrations have decreased by 22.3 % since 1999 in the city's urban core, and DNPH measurements at a nearby Photochemical Assessment Monitoring Station (PAMS) site show a greater decrease of 53 %.