Journal of Magnetic Resonance Open (Jun 2022)

A Chemical Biology Primer for NMR Spectroscopists

  • Evan T. Clark,
  • Elanor E. Sievers,
  • Galia T. Debelouchina

Journal volume & issue
Vol. 10
p. 100044

Abstract

Read online

Among structural biology techniques, NMR spectroscopy offers unique capabilities that enable the atomic resolution studies of dynamic and heterogeneous biological systems under physiological and native conditions. Complex biological systems, however, often challenge NMR spectroscopists with their low sensitivity, crowded spectra or large linewidths that reflect their intricate interaction patterns and dynamics. While some of these challenges can be overcome with the development of new spectroscopic approaches, chemical biology can also offer elegant and efficient solutions at the sample preparation stage. In this tutorial, we aim to present several chemical biology tools that enable the preparation of selectively and segmentally labeled protein samples, as well as the introduction of site-specific spectroscopic probes and post-translational modifications. The four tools covered here, namely cysteine chemistry, inteins, native chemical ligation, and unnatural amino acid incorporation, have been developed and optimized in recent years to be more efficient and applicable to a wider range of proteins than ever before. We briefly introduce each tool, describe its advantages and disadvantages in the context of NMR experiments, and offer practical advice for sample preparation and analysis. We hope that this tutorial will introduce beginning researchers in the field to the possibilities chemical biology can offer to NMR spectroscopists, and that it will inspire new and exciting applications in the quest to understand protein function in health and disease.

Keywords