Hyaluronic Acid Derivative Effect on Niosomal Coating and Interaction with Cellular Mimetic Membranes
Patrizia N. Hanieh,
Jacopo Forte,
Chiara Di Meo,
Maria Grazia Ammendolia,
Elena Del Favero,
Laura Cantù,
Federica Rinaldi,
Carlotta Marianecci,
Maria Carafa
Affiliations
Patrizia N. Hanieh
Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzle A. Moro 5, 00185 Roma, Italy
Jacopo Forte
Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzle A. Moro 5, 00185 Roma, Italy
Chiara Di Meo
Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzle A. Moro 5, 00185 Roma, Italy
Maria Grazia Ammendolia
Centro Nazionale Tecnologie Innovative in Sanità Pubblica, Istituto Superiore di Sanità, Viale Regina Elena 299, 00162 Rome, Italy
Elena Del Favero
Laboratorio Interdisciplinare Tecnologie Avanzate (L.I.T.A.), Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090 Segrate, Italy
Laura Cantù
Laboratorio Interdisciplinare Tecnologie Avanzate (L.I.T.A.), Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Fratelli Cervi 93, 20090 Segrate, Italy
Federica Rinaldi
Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzle A. Moro 5, 00185 Roma, Italy
Carlotta Marianecci
Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzle A. Moro 5, 00185 Roma, Italy
Maria Carafa
Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzle A. Moro 5, 00185 Roma, Italy
Hyaluronic acid (HA) is one of the most used biopolymers in the development of drug delivery systems, due to its biocompatibility, biodegradability, non-immunogenicity and intrinsic-targeting properties. HA specifically binds to CD44; this property combined to the EPR effect could provide an option for reinforced active tumor targeting by nanocarriers, improving drug uptake by the cancer cells via the HA-CD44 receptor-mediated endocytosis pathway. Moreover, HA can be easily chemically modified to tailor its physico-chemical properties in view of specific applications. The derivatization with cholesterol confers to HA an amphiphilic character, and then the ability of anchoring to niosomes. HA-Chol was then used to coat Span® or Tween® niosomes providing them with an intrinsic targeting shell. The nanocarrier physico-chemical properties were analyzed in terms of hydrodynamic diameter, ζ-potential, and bilayer structural features to evaluate the difference between naked and HA-coated niosomes. Niosomes stability was evaluated over time and in bovine serum. Moreover, interaction properties of HA-coated nanovesicles with model membranes, namely liposomes, were studied, to obtain insights on their interaction behavior with biological membranes in future experiments. The obtained coated systems showed good chemical physical features and represent a good opportunity to carry out active targeting strategies.