Foods (May 2024)

Improving the Properties of Gelatin-Based Films by Incorporation of “Pitanga” Leaf Extract and Crystalline Nanocellulose

  • Larissa Tessaro,
  • Ana Gabrielle R. Pereira,
  • Milena Martelli-Tosi,
  • Paulo José do Amaral Sobral

DOI
https://doi.org/10.3390/foods13101480
Journal volume & issue
Vol. 13, no. 10
p. 1480

Abstract

Read online

Biopolymer-based films can be activated by the incorporation of active compounds into their matrix. Plant extracts are rich in phenolic compounds, which have antimicrobial and/or antioxidant properties. The aim of this study was to produce gelatin-based active films and nanocomposite films incorporated with “pitanga” (Eugenia uniflora L.) leaf extract (PLE) and/or crystalline nanocellulose extracted from soybean straw (CN), and to study the physicochemical, functional, microstructural, thermal, UV/Vis light barrier, and antioxidant properties of these materials. PLE enhanced some film properties, such as tensile strength (from 30.2 MPa to 40.6 MPa), elastic modulus (from 9.3 MPa to 11.3 MPa), the UV/Vis light barrier, and antioxidant activity, in addition to affecting the microstructural, surface, and color properties. These improvements were even more significant in nanocomposites simultaneously containing PLE and CN (59.5 MPa for tensile strength and 15.1 MPa for elastic modulus), and these composites also had lower moisture content (12.2% compared to 13.5–14.4% for other treatments) and solubility in water (from 48.9% to 44.1%). These improvements may be the result of interactions that occur between PLE’s polyphenols and gelatin, mainly in the presence of CN, probably due to the formation of a stable PLE–CN–gelatin complex. These results are relevant for the food packaging sector, as the activated nanocomposite films exhibited enhanced active, barrier, and mechanical properties due to the presence of PLE and CN, in addition to being entirely produced with sustainable components from natural and renewable sources.

Keywords