Frontiers in Cell and Developmental Biology (Jun 2024)

Screening of potentially active compounds against rheumatoid arthritis in the Juan-Bi decoction using systems pharmacology and animal experiments

  • Dahai Liu,
  • Qiang Fu,
  • Leyna G. Liu,
  • Wenwen Li,
  • Fei Qi,
  • Justin Liu,
  • Lifeng Shang,
  • Xiu Wang,
  • Fang Yang,
  • Jie Li,
  • Daoqiang Lu,
  • Huiying Feng,
  • Ziwen Zhang,
  • Yiqing Chen,
  • Junru Liang,
  • Jiayi Yao,
  • Hua Lv,
  • Riwang Li,
  • Jun Wang,
  • Di Wu,
  • Yuxi Liu,
  • Chenglai Xia,
  • Wenxing Li

DOI
https://doi.org/10.3389/fcell.2024.1396890
Journal volume & issue
Vol. 12

Abstract

Read online

Background: The Juan-Bi decoction (JBD) is a classic traditional Chinese medicines (TCMs) prescription for the treatment of rheumatoid arthritis (RA). However, the active compounds of the JBD in RA treatment remain unclear.Aim: The aim of this study is to screen effective compounds in the JBD for RA treatment using systems pharmacology and experimental approaches.Method: Botanical drugs and compounds in the JBD were acquired from multiple public TCM databases. All compounds were initially screened using absorption, distribution, metabolism, excretion, and toxicity (ADMET) and physicochemical properties, and then a target prediction was performed. RA pathological genes were acquired from the DisGeNet database. Potential active compounds were screened by constructing a compound–target–pathogenic gene (C-T-P) network and calculating the cumulative interaction intensity of the compounds on pathogenic genes. The effectiveness of the compounds was verified using lipopolysaccharide (LPS)-induced RAW.264.7 cells and collagen-induced arthritis (CIA) mouse models.Results: We screened 15 potentially active compounds in the JBD for RA treatment. These compounds primarily act on multiple metabolic pathways, immune pathways, and signaling transduction pathways. Furthermore, in vivo and in vitro experiments showed that bornyl acetate (BAC) alleviated joint damage, and inflammatory cells infiltrated and facilitated a smooth cartilage surface via the suppression of the steroid hormone biosynthesis.Conclusion: We screened potential compounds in the JBD for the treatment of RA using systems pharmacology approaches. In particular, BAC had an anti-rheumatic effect, and future studies are required to elucidate the underlying mechanisms.

Keywords