Egyptian Informatics Journal (Sep 2024)
Efficient and Secure Color Image Encryption System with Enhanced Speed and Robustness Based on Binary Tree
Abstract
Recently, there has been a growing demand for image encryption techniques that offer robust protection and minimize processing time. The proposed paper proposes an efficient color image encryption system that excels in speed and security. The encryption system comprises three fundamental phases. The initial phase generates a unique encryption key by combining user-defined input with the original image and applying various operations and hash functions. In the confusion phase, the image is divided into blocks, forming a Binary Tree (BT) using primary color blocks, ensuring that the root and leaves belong to different colors. The confused matrix is derived through an inorder traversal that ensures non-adjacency of pixels of the same color, introducing an added layer of security. Finally, each pixel is scrambled by applying BT to its binary form to add more security and complexity. A DNA sequence is generated, and operations are executed based on two different chaotic maps, enhancing unpredictability and attack resistance. Extensive testing has validated the effectiveness of the proposed system, revealing a remarkable 28–45% reduction in processing time compared to recent techniques. Moreover, the system successfully withstands various attacks, as demonstrated through rigorous evaluations, including high-performance, visual perception, and cryptosystem strength evaluations. These results underscore the practical applicability and robust security offered by our efficient color image encryption solution, which provides a practical solution for applications prioritizing efficiency.