Research (Jan 2020)

Large-Scale Synthesis of the Stable Co-Free Layered Oxide Cathode by the Synergetic Contribution of Multielement Chemical Substitution for Practical Sodium-Ion Battery

  • Yao Xiao,
  • Tao Wang,
  • Yan-Fang Zhu,
  • Hai-Yan Hu,
  • Shuang-Jie Tan,
  • Shi Li,
  • Peng-Fei Wang,
  • Wei Zhang,
  • Yu-Bin Niu,
  • En-Hui Wang,
  • Yu-Jie Guo,
  • Xinan Yang,
  • Lin Liu,
  • Yu-Mei Liu,
  • Hongliang Li,
  • Xiao-Dong Guo,
  • Ya-Xia Yin,
  • Yu-Guo Guo

DOI
https://doi.org/10.34133/2020/1469301
Journal volume & issue
Vol. 2020

Abstract

Read online

The O3-type layered oxide cathodes for sodium-ion batteries (SIBs) are considered as one of the most promising systems to fully meet the requirement for future practical application. However, fatal issues in several respects such as poor air stability, irreversible complex multiphase evolution, inferior cycling lifespan, and poor industrial feasibility are restricting their commercialization development. Here, a stable Co-free O3-type NaNi0.4Cu0.05Mg0.05Mn0.4Ti0.1O2 cathode material with large-scale production could solve these problems for practical SIBs. Owing to the synergetic contribution of the multielement chemical substitution strategy, this novel cathode not only shows excellent air stability and thermal stability as well as a simple phase-transition process but also delivers outstanding battery performance in half-cell and full-cell systems. Meanwhile, various advanced characterization techniques are utilized to accurately decipher the crystalline formation process, atomic arrangement, structural evolution, and inherent effect mechanisms. Surprisingly, apart from restraining the unfavorable multiphase transformation and enhancing air stability, the accurate multielement chemical substitution engineering also shows a pinning effect to alleviate the lattice strains for the high structural reversibility and enlarges the interlayer spacing reasonably to enhance Na+ diffusion, resulting in excellent comprehensive performance. Overall, this study explores the fundamental scientific understandings of multielement chemical substitution strategy and opens up a new field for increasing the practicality to commercialization.