Energies (Jan 2022)

Granular PCM-Enhanced Plaster for Historical Buildings: Experimental Tests and Numerical Studies

  • Eleonora Baccega,
  • Michele Bottarelli

DOI
https://doi.org/10.3390/en15030975
Journal volume & issue
Vol. 15, no. 3
p. 975

Abstract

Read online

The construction sector is among the major players responsible for global energy consumption and therefore related emissions, both because of the constantly increasing indoor air quality standard which requires increasingly higher energy demands as well as the great share of historical buildings which are now obsolete and are not up to date with current regulations. Phase change materials (PCMs) applied on the building envelope represent a feasible possibility to improve the performance of existing buildings, also the historical ones, increasing their thermal inertia without violating any legal restriction or causing further alterations to the structure. More specifically, focus of this research was on the addition of a granular paraffin PCM into a lime-based plaster. Experimental tests at lab scale and numerical simulations with COMSOL Multiphysics were carried out to characterize the plasters realized, namely one reference lime-based plaster and one with incorporated 10% by mass of granular PCM (named REFp and PCMp, respectively). The behavior of these plasters applied on the exterior side of a wall was then simulated and compared in terms of temperatures and heat fluxes. However, considering that the estimated thermal conductivity of the reference lime-based plaster was lower than the values found in literature, the simulations were carried out considering an additional plaster, namely a lime-based plaster (renamed LITp), whose properties were found in literature and considered quite representative of a consistent share of existing historical buildings. Great improvements were observed from the application of PCM into the plaster, with reductions of the incoming energy between 9% and 18%.

Keywords