Sensors (Mar 2017)

Time-of-Travel Methods for Measuring Optical Flow on Board a Micro Flying Robot

  • Erik Vanhoutte,
  • Stefano Mafrica,
  • Franck Ruffier,
  • Reinoud J. Bootsma,
  • Julien Serres

DOI
https://doi.org/10.3390/s17030571
Journal volume & issue
Vol. 17, no. 3
p. 571

Abstract

Read online

For use in autonomous micro air vehicles, visual sensors must not only be small, lightweight and insensitive to light variations; on-board autopilots also require fast and accurate optical flow measurements over a wide range of speeds. Using an auto-adaptive bio-inspired Michaelis–Menten Auto-adaptive Pixel (M 2 APix) analog silicon retina, in this article, we present comparative tests of two optical flow calculation algorithms operating under lighting conditions from 6 × 10 − 7 to 1 . 6 × 10 − 2 W·cm − 2 (i.e., from 0.2 to 12,000 lux for human vision). Contrast “time of travel” between two adjacent light-sensitive pixels was determined by thresholding and by cross-correlating the two pixels’ signals, with measurement frequency up to 5 kHz for the 10 local motion sensors of the M 2 APix sensor. While both algorithms adequately measured optical flow between 25 ∘ /s and 1000 ∘ /s, thresholding gave rise to a lower precision, especially due to a larger number of outliers at higher speeds. Compared to thresholding, cross-correlation also allowed for a higher rate of optical flow output (99 Hz and 1195 Hz, respectively) but required substantially more computational resources.

Keywords