BMC Plant Biology (Oct 2023)

Transcriptomics integrated with metabolomics reveals the effect of cold stress on rice microspores

  • Yingbo Li,
  • Yingjie Zong,
  • Wenrui Li,
  • Guimei Guo,
  • Longhua Zhou,
  • Hongwei Xu,
  • Runhong Gao,
  • Chenghong Liu

DOI
https://doi.org/10.1186/s12870-023-04530-2
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Microspore culture is one of the important biotechnological tools in plant breeding. The induction of microspore embryogenesis is a critical factor that affects the yield of microspore-derived embryo productions. Cold treatment has been reported to reprogram the gametophytic pathway in various plant species. However, the exact mechanism(s) underlying the effect of cold pre-treatment of floral buds on the efficiency of ME is still not clear. Results In this study, the effects of cold stress on the microspore totipotency of rice cultivar Zhonghua 11 were investigated. Our results revealed that a 10-day cold treatment is necessary for microspore embryogenesis initiation. During this period, the survival rate of microspores increased and reached a peak at 7 days post treatment (dpt), before decreasing at 10 dpt. RNA-seq analysis showed that the number of DEGs increased from 3 dpt to 10 dpt, with more downregulated DEGs than upregulated ones at the same time point. GO enrichment analysis showed a shift from ‘Response to abiotic stimulus’ at 3 dpt to ‘Metabolic process’ at 7 and 10 dpt, with the most significant category in the cellular component being ‘cell wall’. KEGG analysis of the pathways revealed changes during cold treatment. Mass spectrometry was used to evaluate the variations in metabolites at 10 dpt compared to 0 dpt, with more downregulated DEMs being determined in both GC-MS and LC-MS modes. These DEMs were classified into 11 categories, Most of the DEMs belonged to ‘lipids and lipid-like molecules’. KEGG analysis of DEMs indicates pathways related to amino acid and nucleotide metabolism being upregulated and those related to carbohydrate metabolism being downregulated. An integration analysis of transcriptomics and metabolomics showed that most pathways belonged to ‘Amino acid metabolism’ and ‘Carbohydrate metabolism’. Four DEMs were identified in the interaction network, with stearidonic acid involving in the most correlations, suggesting the potential role in microspore totipotency. Conclusions Our findings exhibited the molecular events occurring during stress-induced rice microspore. Pathways related to ‘Amino acid metabolism’ and ‘Carbohydrate metabolism’ may play important roles in rice microspore totipotency. Stearidonic acid was identified, which may participate in the initiation of microspore embryogenesis.

Keywords