Proceedings (Jan 2021)
Nanostructured Materials Based on Thin Films and Nanoclusters for Hydrogen Gas Sensing
Abstract
In this paper, we present two approaches to synthesize nanostructured metal oxide semiconductors in a form of multi-layer thin films later assembled as a conductometric gas-sensors. The first approach produces a combination of thin solid film of tungsten trioxide (WO3) with nanoclusters of cupric oxide (CuO) prepared by a magnetron-based gas aggregation cluster source (GAS). The second method is a two-step reactive magnetron sputtering forming a nanostructured copper tungstate (CuWO4) on-top of a WO3 film. Both methods lead to synthesis of nanosized hetero-junctions. These greatly improve the sensorial response to hydrogen in comparison with a WO3 thin film alone.
Keywords