Journal of Clinical Medicine (Dec 2021)

Surgical Applications of Lymphatic Vessel Visualization Using Photoacoustic Imaging and Augmented Reality

  • Yushi Suzuki,
  • Hiroki Kajita,
  • Shiho Watanabe,
  • Marika Otaki,
  • Keisuke Okabe,
  • Hisashi Sakuma,
  • Yoshifumi Takatsume,
  • Nobuaki Imanishi,
  • Sadakazu Aiso,
  • Kazuo Kishi

DOI
https://doi.org/10.3390/jcm11010194
Journal volume & issue
Vol. 11, no. 1
p. 194

Abstract

Read online

Lymphaticovenular anastomosis (LVA) is a widely performed surgical procedure for the treatment of lymphedema. For good LVA outcomes, identifying lymphatic vessels and venules is crucial. Photoacoustic lymphangiography (PAL) is a new technology for visualizing lymphatic vessels. It can depict lymphatic vessels at high resolution; therefore, this study focused on how to apply PAL for lymphatic surgery. To visualize lymphatic vessels, indocyanine green was injected as a color agent. PAI-05 was used as the photoacoustic imaging device. Lymphatic vessels and veins were visualized at 797- and 835-nm wavelengths. First, it was confirmed whether the branching of the vasculature as depicted by the PAL was consistent with the actual branching of the vasculature as confirmed intraoperatively. Second, to use PAL images for surgical planning, preoperative photoacoustic images were superimposed onto the patient limb through augmented reality (AR) glasses (MOVERIO Smart Glass BT-30E). Lymphatics and venule markings drawn using AR glasses were consistent with the actual intraoperative images obtained during LVA. To anastomose multiple lymphatic vessels, a site with abundant venous branching was selected as the incision site; and selecting the incision site became easier. The anatomical morphology obtained by PAL matched the surgical field. AR-based marking could be very useful in future LVA.

Keywords