Immunity, Inflammation and Disease (Jul 2023)

Transcription factor Krüppel‐like factor 4 upregulated G protein‐coupled receptor 30 alleviates intestinal inflammation and apoptosis, and protects intestinal integrity from intestinal ischemia–reperfusion injury

  • Jie Yin,
  • Xiaoli Xie,
  • Jinfeng Yao,
  • Xiaoxu Jin,
  • Huiqing Jiang,
  • Chenguang Ji

DOI
https://doi.org/10.1002/iid3.940
Journal volume & issue
Vol. 11, no. 7
pp. n/a – n/a

Abstract

Read online

Abstract Introduction Intestinal ischemia/reperfusion (I/R) injury is a common clinical event occurring during multiple clinical pathological processes. Here, we designed this paper to discuss the role of G protein‐coupled receptor 30 (GPR30) playing in intestinal I/R injury. Methods An oxygen‐glucose deprivation/reoxygenation (OGD/R) cell model was established to simulate the pathological process of I/R injury. With the application of enzyme‐linked immunosorbent assay, TUNEL, and transepithelial electrical resistance (TEER) assays, the levels of inflammatory cytokines, cell apoptosis, and intestinal integrity were estimated. The corresponding proteins were estimated by applying western blot. Immunofluorescence was conducted to examine N‐terminal Gasdermin D (GSDMD‐N) expression. The interplay between KLF4 and GPR30 was demonstrated by dual‐luciferase reporter assay and chromatin immunoprecipitation. Results The results showed that GPR30 was downregulated in Caco‐2 cells exposed to OGD/R. GPR30 overexpression reduced the production of TNF‐α, IL‐6, IL‐1β, and IL‐18, the TUNEL‐positive cells, as well as the contents of p‐p65, Cox‐2, Inos, Bax, and cleaved‐PARP, but elevated the expression of Bcl‐2 in OGD/R‐induced Caco‐2 cells. In addition, OGD/R‐induced the reduction of TEER value and reduced expression of tight junction proteins in Caco‐2 cells, which was partially restored by GPR30 overexpression. Furthermore, GPR30 suppressed nod‐like receptor pyrin 3 inflammasome and GSDMD‐N expression. It was evidenced that Krüppel‐like factor 4 (KLF4) could directly bind to GPR30 promoter and positively regulate GPR30 expression. The regulation of GPR30 overexpression above was weakened by KLF4 knockdown. Conclusion Collectively, our findings suggested that KLF4 could transcriptionally upregulate GPR30, and GPR30 prevented intestine I/R injury by inhibiting inflammation and apoptosis, and maintaining intestinal integrity that provides potential targets for mitigating the I/R injury.

Keywords