Haematologica (Sep 2014)

Potent co-operation between the NUP98-NSD1 fusion and the FLT3-ITD mutation in acute myeloid leukemia induction

  • Angeliki Thanasopoulou,
  • Alexandar Tzankov,
  • Juerg Schwaller

DOI
https://doi.org/10.3324/haematol.2013.100917
Journal volume & issue
Vol. 99, no. 9

Abstract

Read online

The NUP98-NSD1 fusion, product of the t(5;11)(q35;p15.5) chromosomal translocation, is one of the most prevalent genetic alterations in cytogenetically normal pediatric acute myeloid leukemias and is associated with poor prognosis. Co-existence of an FLT3-ITD activating mutation has been found in more than 70% of NUP98-NSD1-positive patients. To address functional synergism, we determined the transforming potential of retrovirally expressed NUP98-NSD1 and FLT3-ITD in the mouse. Expression of NUP98-NSD1 provided mouse strain-dependent, aberrant self-renewal potential to bone marrow progenitor cells. Co-expression of FLT3-ITD increased proliferation and maintained self-renewal in vitro. Transplantation of immortalized progenitors co-expressing NUP98-NSD1 and FLT3-ITD into mice resulted in acute myeloid leukemia after a short latency. In contrast, neither NUP98-NSD1 nor FLT3-ITD single transduced cells were able to initiate leukemia. Interestingly, as reported for patients carrying NUP98-NSD1, an increased Flt3-ITD to wild-type Flt3 mRNA expression ratio with increased FLT3-signaling was associated with rapidly induced disease. In contrast, there was no difference in the expression levels of the NUP98-NSD1 fusion or its proposed targets HoxA5, HoxA7, HoxA9 or HoxA10 between animals with different latencies to develop disease. Finally, leukemic cells co-expressing NUP98-NSD1 and FLT3-ITD were very sensitive to a small molecule FLT3 inhibitor, which underlines the significance of aberrant FLT3 signaling for NUP98-NSD1-positive leukemias and suggests new therapeutic approaches that could potentially improve patient outcome.