MethodsX (Jan 2018)

Removal of phosphate from River water using a new baffle plates electrochemical reactor

  • Khalid S. Hashim,
  • Ibijoke Adeola Idowu,
  • Nisreen Jasim,
  • Rafid Al Khaddar,
  • Andy Shaw,
  • David Phipps,
  • P. Kot,
  • Montserrat Ortoneda Pedrola,
  • Ali W. Alattabi,
  • Muhammad Abdulredha,
  • Reham Alwash,
  • K.H. Teng,
  • Keyur H. Joshi,
  • Mohammed Hashim Aljefery

Journal volume & issue
Vol. 5
pp. 1413 – 1418

Abstract

Read online

During the last 50 years, the human activities have significantly altered the natural cycle of phosphate in this planet, causing phosphate to accumulate in the freshwater ecosystems of some countries to at least 75% greater than preindustrial levels, which indicates an urgent need to develop efficient phosphate treatment methods. Therefore, the current study investigates the removal of phosphate from river water using a new electrochemical cell (PBPR). This new cell utilises perforated baffle plates as a water mixer rather than magnetic stirrers that require power to work. This study investigates the influence of key operational parameters such as initial pH (ipH), current density (Ј), inter-electrode distance (ID), detention time (t) and initial phosphate concentration (IC) on the removal efficiency, and influence of the electrocoagulation process on the morphology of the surface of electrodes.Overall, the results showed that the new reactor was efficient enough to reduce the concentration of phosphate to the permissible limits. Additionally, SEM images showed that the Al anode became rough and nonuniform due to the production of aluminium hydroxides. The main advantages of the electrocoagulation technique are: • The EC method does not produce secondary pollutants as it does not required chemical additives, while other traditional treatment methods required either chemical or biological additives [1–4]. • It has a large treatment capacity and a relatively short treatment time in comparison with other treatment methods, such as the biological methods [1,5–7]. • The EC method produces less sludge than traditional treatment traditional chemical and biological treatment methods [8,9].EC technology, like any other treatment method, has some drawbacks that could limit its performance. For instance, it still has a clear deficiency in the variety of reactor design, and the electrodes should be periodically replaced as they dissolve into the solution due to the oxidation process [2,10]. Method name: Electrocoagulation, Keywords: Electrocoagulation, Phosphate, Multiple regression model, Hydrogen gas, Operating cost