Energies (Sep 2021)

A Machine-Learning Approach to Identify the Influence of Temperature on FRA Measurements

  • Regelii Suassuna de Andrade Ferreira,
  • Patrick Picher,
  • Hassan Ezzaidi,
  • Issouf Fofana

DOI
https://doi.org/10.3390/en14185718
Journal volume & issue
Vol. 14, no. 18
p. 5718

Abstract

Read online

Frequency response analysis (FRA) is a powerful and widely used tool for condition assessment in power transformers. However, interpretation schemes are still challenging. Studies show that FRA data can be influenced by parameters other than winding deformation, including temperature. In this study, a machine-learning approach with temperature as an input attribute was used to objectively identify faults in FRA traces. To the best knowledge of the authors, this has not been reported in the literature. A single-phase transformer model was specifically designed and fabricated for use as a test object for the study. The model is unique in that it allows the non-destructive interchange of healthy and distorted winding sections and, hence, reproducible and repeatable FRA measurements. FRA measurements taken at temperatures ranging from −40 °C to 40 °C were used first to describe the impact of temperature on FRA traces and then to test the ability of the machine learning algorithms to discriminate between fault conditions and temperature variation. The results show that when temperature is not considered in the training dataset, the algorithm may misclassify healthy measurements, taken at different temperatures, as mechanical or electrical faults. However, once the influence of temperature was considered in the training set, the performance of the classifier as studied was restored. The results indicate the feasibility of using the proposed approach to prevent misclassification based on temperature changes.

Keywords