Ultrasonics Sonochemistry (Dec 2024)

Ultrasound effect on a biorefinery lignin-cellulose mixture

  • Kait Kaarel Puss,
  • Peeter Paaver,
  • Mart Loog,
  • Siim Salmar

Journal volume & issue
Vol. 111
p. 107071

Abstract

Read online

Forest biorefineries provide multiple new avenues for applied research. The main concept lies in the malleability of the processes and their stepwise organization. The core element of the biorefinery concept addressed in the present study is the pretreatment step; here, wood biomass is converted into free hemicellulosic sugars, lignin and cellulose. In traditional approaches, the pretreatment step is a starting point for isolating and separating lignin or cellulose through different processes. In this study, instead of performing any separation, a lignin-cellulose mixture was used as its own material, and the effects of ultrasound treatment with a probe system at 20 kHz, with various amplitude, sonication time and dry matter content were investigated with the aim of assessing the formation of a nanocellulose structure with a high lignin content (>30 %) and investigating the stability of the lignin-cellulose mixture under aqueous conditions. We demonstrated the importance of dry matter content for the specific particle size and water retention values for this mixture. US treatment of lignin-cellulose mixtures <4 % dry matter formed a gel-like material, with low particle size (90 % below 30 μm and smallest at nanoscale). Low dry matter loading led to better US transfer and higher conversion of cellulose to <100 nm nanoparticles. Our study can serve as a baseline for future developments in the field of stable emulsions, filtering materials or inputs for material synthesis.

Keywords