Journal of Neuroinflammation (Jan 2018)

Role of the indoleamine-2,3-dioxygenase/kynurenine pathway of tryptophan metabolism in behavioral alterations in a hepatic encephalopathy rat model

  • Xi Jiang,
  • Lexing Xu,
  • Lin Tang,
  • Fuhe Liu,
  • Ziwei Chen,
  • Jiajia Zhang,
  • Lei Chen,
  • Cong Pang,
  • Xuefeng Yu

DOI
https://doi.org/10.1186/s12974-017-1037-9
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background This study aims to explore the role of indoleamine-2,3-dioxygenase (IDO)/kynurenine (KYN) pathway of tryptophan (TRY) metabolism in behavioral alterations observed in hepatic encephalopathy (HE) rats. Methods Expression levels of proinflammatory cytokines were tested by QT-PCR and ELISA, levels of IDOs were tested by QT-PCR and Western blot, and levels of 5-hydroxytryptamine (5-HT), KYN, TRY, 3-hydroxykynurenine (3-HK), and kynurenic acid (KA) in different brain regions were estimated using HPLC. Effects of the IDO direct inhibitor 1-methyl-l-tryptophan (1-MT) on cognitive, anxiety, and depressive-like behavior were evaluated in bile duct ligation (BDL) rats. Results Increased serum TNF-α, IL-1β, and IL-6 levels were shown in rats 7 days after BDL, and these increases were observed earlier than those in the brain, indicating peripheral immune activation may result in central upregulation of proinflammatory cytokines. Moreover, BDL rats showed a progressive decline in memory formation, as well as anxiety and depressive-like behavior. Further study revealed that IDO expression increased after BDL, accompanied by a decrease of 5-HT and an increase of KYN, as well as abnormal expression of 3-HK and KA. The above results affected by BDL surgery were reversed by IDO inhibitor 1-MT treatment. Conclusion Taken together, these findings indicate that (1) behavioral impairment in BDL rats is correlated with proinflammatory cytokines; (2) TRY pathway of KYN metabolism, activated by inflammation, may play an important role in HE development; and (3) 1-MT may serve as a therapeutic agent for HE.

Keywords