Heliyon (Feb 2024)
Mechanism of action and neuroprotective role of nicorandil in ischemic stroke
Abstract
Nicorandil is a dual mechanism anti-anginal agent that acts as a nitric oxide (NO) donor and a potassium (K+) channel opener. Recent studies have evaluated the effect of nicorandil on ischemic stroke. Neurons have a low tolerance to hypoxia and therefore the brain tissue is significantly vulnerable to ischemia. Current approved treatments for ischemic stroke are tissue plasminogen activators and clot retrieval methods. The narrow therapeutic time window and lack of efficacy in restoring the dying neurons urge researchers to develop an alternative approach.In the terminal stages of anoxia, K+ channels induce hyperpolarization in various types of neuronal cells, leading to decreased neuronal activity and the preservation of the brain's energy. Nicorandil can open these K+ channels and sustain the hyperpolarization phase, which may have a neuroprotective effect during hypoxia. Additionally, we review how nicorandil can improve overall stroke outcomes through its anti-inflammatory, anti-oxidative, and edema-reducing effects. One of the major components evaluated in stroke patients is blood pressure. Studies have demonstrated that the effect of nicorandil on blood pressure is related to both its K+ channel opening and NO donating mechanisms. Since both hypertension and hypotension need correction before stroke intervention, it's crucial to consider the role of nicorandil and its impact on blood pressure. Previously published studies indicate that the right dosage of nicorandil can improve cerebral blood flow without significant changes in hemodynamic profiles. In this review, we discuss how nicorandil may contribute to better stroke outcomes based on previously published literature and laboratory findings.