Journal of Marine Science and Engineering (Sep 2024)

Attenuation Capacity of a Multi-Cylindrical Floating Breakwater

  • Luca Martinelli,
  • Omar Mohamad,
  • Matteo Volpato,
  • Claes Eskilsson,
  • Manuele Aufiero

DOI
https://doi.org/10.3390/jmse12091550
Journal volume & issue
Vol. 12, no. 9
p. 1550

Abstract

Read online

Floating breakwaters (FBs) are frequently used to protect marinas, fisheries, or other bodies of water subject to wave attacks of moderate intensity. New forms of FBs are frequently introduced and investigated in the literature as a consequence of technological advancements. In particular, a new possibility is offered by High-Density Polyethylene (HDPE) by extruding pipes of large diameters (e.g., 2.5 m in diameter) and with virtually no limit in length (hundreds of meters). By connecting two or three such pipes in a vertical layout, a novel low-cost floating breakwater with deep draft is devised. This note investigates numerically and experimentally the efficiency of this type of multi-cylindrical FBs in evaluating different geometries and aims at finding design guidelines. Due to the extraordinary length of the breakwater, the investigation is carried out in two dimensions. The 2D numerical model is based on the solution of the rigid body motion in the frequency domain, where the hydrodynamic forces are evaluated (thanks to a linear potential flow model), and the mooring forces do not include dynamic effects nor drag on the lines. The numerical predictions are compared to the results of a 1:10 scale experimental investigation. An atypical shape of the wave transmission (kt) curve is found, with a very low minimum in correspondence with the heave resonance frequency. The results essentially point out the influence of the position of the gravity center, the stiffness, and the mutual distance among cylinders on kt.

Keywords