PLoS ONE (Jan 2023)

Association between land use, land cover, plant genera, and pollinator abundance in mixed-use landscapes.

  • Vishesh L Diengdoh,
  • Barry W Brook,
  • Mark Hunt,
  • Stefania Ondei

DOI
https://doi.org/10.1371/journal.pone.0294749
Journal volume & issue
Vol. 18, no. 11
p. e0294749

Abstract

Read online

Pollinators are threatened by land-use and land-cover changes, with the magnitude of the threat depending on the pollinating taxa, land-use type and intensity, the amount of natural habitat remaining, and the ecosystem considered. This study aims to determine the effect of land use (protected areas, plantations, pastures), land cover (percentage of forest and open areas within buffers of different sizes), and plant genera on the relative abundance of nectivorous birds (honeyeaters), bees (native and introduced), and beetles in the mixed-use landscape of the Tasman Peninsula (Tasmania, Australia) using mixed-effect models. We found the predictor selected (through model selection based on R2) and the effect of the predictors varied depending on the pollinating taxa. The land-use predictors were selected for only the honeyeater abundance model with protected areas and plantations having substantive positive effects. Land-cover predictors were selected for the honeyeater and native bee abundance models with open land cover within 1500 m and 250 m buffers having substantive negative and positive effects on honeyeaters and native bees respectively. Bees and beetles were observed on 24 plant genera of which only native plants (and not invasive/naturalised) were positively associated with pollinating insects. Pultenaea and Leucopogon were positively associated with native bees while Leucopogon, Lissanthe, Pimelea, and Pomaderris were positively associated with introduced bees. Leptospermum was the only plant genus positively associated with beetles. Our results highlight that one size does not fit all-that is pollinator responses to different landscape characteristics vary, emphasising the importance of considering multiple habitat factors to manage and support different pollinator taxa.