Photonics (Oct 2022)
Phase-Controlled Entanglement in a Four-Mode Optomechanical System
Abstract
We present a scheme for realizing phase-controlled entanglement in a microwave optomechanical system comprising two microwave cavities and two mechanical oscillators. Under specific driving conditions, we show that this optomechanical interface can be exploited to generate simultaneously the stationary cavity–cavity entanglement, mechanical–mechanical entanglement, and cavity–mechanical entanglement. Due to the closed loop interaction, we find that the entanglement can be controlled flexibly by tuning the phase difference between the optomechanical coupling strengths. The dependence of the entanglement on the amplitudes of the optomechanical coupling strengths is also explored in detail. Moreover, the bipartite entanglements are robust against temperature, and it is shown that the mechanical oscillators are cooled to the ground state in the parameter regimes for observing entanglement.
Keywords