Novel Perbutyrylated Glucose Derivatives of (–)-Epigallocatechin-3-Gallate Inhibit Cancer Cells Proliferation by Decreasing Phosphorylation of the EGFR: Synthesis, Cytotoxicity, and Molecular Docking
Ya Wang,
Xiao-Jing Shen,
Fa-Wu Su,
Yin-Rong Xie,
Li-Xia Wang,
Ning Zhang,
Yi-Long Wu,
Yun Niu,
Dong-Ying Zhang,
Cheng-Ting Zi,
Xuan-Jun Wang,
Jun Sheng
Affiliations
Ya Wang
Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China
Xiao-Jing Shen
Party Committee of Organ, Yunnan Agricultural University, Kunming 650201, China
Fa-Wu Su
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
Yin-Rong Xie
Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China
Li-Xia Wang
Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China
Ning Zhang
Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China
Yi-Long Wu
Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China
Yun Niu
Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China
Dong-Ying Zhang
Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China
Cheng-Ting Zi
Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China
Xuan-Jun Wang
Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China
Jun Sheng
Key Laboratory of Pu-er Tea Science, Ministry of Education, College of Science, Yunnan Agricultural University, Kunming 650201, China
Lung cancer is one of the most commonly occurring cancer mortality worldwide. The epidermal growth factor receptor (EGFR) plays an important role in cellular functions and has become the new promising target. Natural products and their derivatives with various structures, unique biological activities, and specific selectivity have served as lead compounds for EGFR. D-glucose and EGCG were used as starting materials. A series of glucoside derivatives of EGCG (7–12) were synthesized and evaluated for their in vitro anticancer activity against five human cancer cell lines, including HL-60, SMMC-7721, A-549, MCF-7, and SW480. In addition, we investigated the structure-activity relationship and physicochemical property–activity relationship of EGCG derivatives. Compounds 11 and 12 showed better growth inhibition than others in four cancer cell lines (HL-60, SMMC-7721, A-549, and MCF), with IC50 values in the range of 22.90–37.87 μM. Compounds 11 and 12 decreased phosphorylation of EGFR and downstream signaling protein, which also have more hydrophobic interactions than EGCG by docking study. The most active compounds 11 and 12, both having perbutyrylated glucose residue, we found that perbutyrylation of the glucose residue leads to increased cytotoxic activity and suggested that their potential as anticancer agents for further development.