Journal of Dairy Science (Apr 2024)
Gas exchange, rumen hydrogen sinks, and nutrient digestibility and metabolism in lactating dairy cows fed 3-nitrooxypropanol and cracked rapeseed
Abstract
ABSTRACT: Fat in the form of cracked rapeseed and 3-nitrooxypropanol (3-NOP, market as Bovaer) were fed alone or in combination to 4 Danish Holstein multicannulated dairy cows, with the objective to investigate effects on gas exchange, dry matter intake (DMI), nutrient digestion, and nutrient metabolism. The study design was a 4 × 4 Latin square with a 2 × 2 factorial treatment arrangement with 2 levels of fat supplementation; 33 g of crude fat per kg of dry matter (DM) or 64 g of crude fat per kg of DM for low and high fat diets, respectively, and 2 levels of 3-NOP; 0 mg/kg DM or 80 mg/kg DM. In total, 4 diets were formulated: low fat (LF), high fat (HF), 3-NOP and low fat (3LF), and 3-NOP and high fat (3HF). Cows were fed ad libitum and milked twice daily. The adaptation period lasted 11 d, followed by 5 d with 12 diurnal sampling times of digesta and ruminal fluid. Thereafter, gas exchange was measured for 5 d in respiration chambers. Chromic oxide and titanium dioxide were used as external flow markers to determine intestinal nutrient flow. No interactions between fat supplementation and 3-NOP were observed for methane yield (g/kg DM), total-tract digestibility of nutrients or total volatile fatty acid (VFA) concentration in the rumen. Methane yield (g/kg DMI) was decreased by 24% when cows were fed 3-NOP. In addition, 3-NOP increased carbon dioxide and hydrogen yield (g/kg DM) by 6% and 3,500%, respectively. However, carbon dioxide production was decreased when expressed on a daily basis. Fat supplementation did not affect methane yield but tended to reduce methane in percent of gross energy intake. A decrease (11%) in DMI was observed, when cows were fed 3-NOP. Likely, the lower DMI mediated a lower passage rate causing the tendency to higher rumen and total-tract neutral detergent fiber digestibility, when the cows were fed 3-NOP. Total VFA concentrations in the rumen were negatively affected both by 3-NOP and fat supplementation. Furthermore, 3-NOP caused a shift in the VFA fermentation profile, with decreased acetate proportion and increased butyrate proportion, whereas propionate proportion was unaffected. Increased concentrations of the alcohols methanol, ethanol, propanol, butanol, and 2-butanol were observed in the ruminal fluid when cows were fed 3-NOP. These changes in rumen metabolites indicate partial re-direction of hydrogen into other hydrogen sinks, when methanogenesis is inhibited by 3-NOP. In conclusion, fat supplementation did not reduce methane yield, whereas 3-NOP reduced methane yield, irrespective of fat level. However, the concentration of 3-NOP and diet composition and resulting desired mitigation effect must be considered before implementation. The observed reduction in DMI with 80 mg 3-NOP/kg DM was intriguing and may indicate that a lower dose should be applied in a Northern European context; however, the mechanism behind needs further investigation.