PLoS ONE (Jan 2015)

Regenerative and immunogenic characteristics of cultured nucleus pulposus cells from human cervical intervertebral discs.

  • Stefan Stich,
  • Meaghan Stolk,
  • Pierre Pascal Girod,
  • Claudius Thomé,
  • Michael Sittinger,
  • Jochen Ringe,
  • Martina Seifert,
  • Aldemar Andres Hegewald

DOI
https://doi.org/10.1371/journal.pone.0126954
Journal volume & issue
Vol. 10, no. 5
p. e0126954

Abstract

Read online

Cell-based regenerative approaches have been suggested as primary or adjuvant procedures for the treatment of degenerated intervertebral disc (IVD) diseases. Our aim was to evaluate the regenerative and immunogenic properties of mildly and severely degenerated cervical nucleus pulposus (NP) cells with regard to cell isolation, proliferation and differentiation, as well as to cell surface markers and co-cultures with autologous or allogeneic peripheral blood mononuclear cells (PBMC) including changes in their immunogenic properties after 3-dimensional (3D)-culture. Tissue from the NP compartment of 10 patients with mild or severe grades of IVD degeneration was collected. Cells were isolated, expanded with and without basic fibroblast growth factor and cultured in 3D fibrin/poly (lactic-co-glycolic) acid transplants for 21 days. Real-time reverse-transcription polymerase chain reaction (RT-PCR) showed the expression of characteristic NP markers ACAN, COL1A1 and COL2A1 in 2D- and 3D-culture with degeneration- and culture-dependent differences. In a 5,6-carboxyfluorescein diacetate N-succinimidyl ester-based proliferation assay, NP cells in monolayer, regardless of their grade of degeneration, did not provoke a significant proliferation response in T cells, natural killer (NK) cells or B cells, not only with donor PBMC, but also with allogeneic PBMC. In conjunction with low inflammatory cytokine expression, analyzed by Cytometric Bead Array and fluorescence-activated cell sorting (FACS), a low immunogenicity can be assumed, facilitating possible therapeutic approaches. In 3D-culture, however, we found elevated immune cell proliferation levels, and there was a general trend to higher responses for NP cells from severely degenerated IVD tissue. This emphasizes the importance of considering the specific immunological alterations when including biomaterials in a therapeutic concept. The overall expression of Fas receptor, found on cultured NP cells, could have disadvantageous implications on their potential therapeutic applications because they could be the targets of cytotoxic T-cell activity acting by Fas ligand-induced apoptosis.