Journal of Translational Medicine (Dec 2022)

Disruption of C/EBPβ-Clec7a axis exacerbates neuroinflammatory injury via NLRP3 inflammasome-mediated pyroptosis in experimental neuropathic pain

  • Dan Wu,
  • Yanqiong Zhang,
  • Chunhui Zhao,
  • Qiuyue Li,
  • Junhong Zhang,
  • Jiaxin Han,
  • Zhijian Xu,
  • Junfang Li,
  • Yan Ma,
  • Ping Wang,
  • Haiyu Xu

DOI
https://doi.org/10.1186/s12967-022-03779-9
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 19

Abstract

Read online

Abstract Background Growing evidence shows that C-Type Lectin Domain Containing 7A (Clec7a) may be involved into neuroinflammatory injury of various neurological diseases. However, its roles in neuropathic pain remain unclear. Methods A chronic constriction injury (CCI) rat model was constructed, and gene expression profilings in spinal cord tissues of CCI-insulted rats were detected by both microarray and RNA-seq studies. A series of bioinformatics analyses identified C/EBPβ-Clec7a to be a candidate axis involved into neuropathic pain. Then, its roles in mechanical allodynia, and pathological and molecular changes during CCI progression were determined by various gain-of-function and loss-of-function experiments in vivo and in vitro. Results Significant upregulation of Clec7a at both mRNA and protein levels were verified in spinal cord tissues of CCI-insulted rats. Clec7a knockdown markedly attenuated CCI-induced mechanical allodynia, obstructed Syk, ERK and JNK phosphorylation, inhibited NLRP3 inflammasome and caspase-1 activation, GSDMD cleavage, and consequently reduced the release of pro-inflammatory cytokines (all P < 0.05). Mechanically, the rat Clec7a promoter was predicted to bind with transcription factor C/EBPβ, confirmed by Luciferase assay and ChIP-qPCR. Both in vivo and in vitro assays demonstrated that C/EBPβ knockdown significantly suppressed CCI- or LPS/ATP-induced Clec7a upregulation, and subsequently reduced Syk, ERK and JNK phosphorylation, NLRP3 oligomerization, caspase-1 activation, GSDMD expression and pyroptosis, which were markedly reversed by the co-transfection of Clec7a expression vector. Conclusions This pre-clinical investigation reveals that C/EBPβ-Clec7a axis may be a potential target for relieving neuropathic pain through alleviating neuroinflammation, paving its way for clinical translation as a promising approach for neuropathic pain therapy.

Keywords