Metabolites (May 2024)

Predicting the Pathway Involvement of Metabolites Based on Combined Metabolite and Pathway Features

  • Erik D. Huckvale,
  • Hunter N. B. Moseley

DOI
https://doi.org/10.3390/metabo14050266
Journal volume & issue
Vol. 14, no. 5
p. 266

Abstract

Read online

A major limitation of most metabolomics datasets is the sparsity of pathway annotations for detected metabolites. It is common for less than half of the identified metabolites in these datasets to have a known metabolic pathway involvement. Trying to address this limitation, machine learning models have been developed to predict the association of a metabolite with a “pathway category”, as defined by a metabolic knowledge base like KEGG. Past models were implemented as a single binary classifier specific to a single pathway category, requiring a set of binary classifiers for generating the predictions for multiple pathway categories. This past approach multiplied the computational resources necessary for training while diluting the positive entries in the gold standard datasets needed for training. To address these limitations, we propose a generalization of the metabolic pathway prediction problem using a single binary classifier that accepts the features both representing a metabolite and representing a pathway category and then predicts whether the given metabolite is involved in the corresponding pathway category. We demonstrate that this metabolite–pathway features pair approach not only outperforms the combined performance of training separate binary classifiers but demonstrates an order of magnitude improvement in robustness: a Matthews correlation coefficient of 0.784 ± 0.013 versus 0.768 ± 0.154.

Keywords