IEEE Access (Jan 2020)
Genetic-Based Approach for Minimum Initial Marking Estimation in Labeled Petri Nets
Abstract
Computing the minimum initial marking (MIM) in labeled Petri nets (PN) while considering a sequence of labels constitutes a difficult problem. The existing solutions of such a problem suffer from diverse limitations. In this paper, we proposed a new approach to automatically compute the MIM in labeled PNs in a timely fashion. We adopted a genetic-based algorithm to model the MIM problem. The choice of such an algorithm is justified by the nature of the MIM process which belongs to the NP-hard class. We experimentally showed the effectiveness of our approach and empirically studied the initial marking quality in particular.
Keywords