APL Materials (Aug 2016)
Hybrid ZnO/GaN distributed Bragg reflectors grown by plasma-assisted molecular beam epitaxy
Abstract
We demonstrate crack-free ZnO/GaN distributed Bragg reflectors (DBRs) grown by hybrid plasma-assisted molecular beam epitaxy using the same growth chamber for continuous growth of both ZnO and GaN without exposure to air. This is the first time these ZnO/GaN DBRs have been demonstrated. The Bragg reflectors consisted up to 20 periods as shown with cross-sectional transmission electron microscopy. The maximum achieved reflectance was 77% with a 32 nm wide stopband centered at 500 nm. Growth along both (0001) and (000 1 ̄ ) directions was investigated. Low-temperature growth as well as two-step low/high-temperature deposition was carried out where the latter method improved the DBR reflectance. Samples grown along the (0001) direction yielded a better surface morphology as revealed by scanning electron microscopy and atomic force microscopy. Reciprocal space maps showed that ZnO(000 1 ̄ )/GaN reflectors are relaxed whereas the ZnO(0001)/GaN DBRs are strained. The ability to n-type dope ZnO and GaN makes the ZnO(0001)/GaN DBRs interesting for various optoelectronic cavity structures.