BMC Plant Biology (Jan 2023)

Comparative network analysis reveals the dynamics of organic acid diversity during fruit ripening in peach (Prunus persica L. Batsch)

  • Xiaohan Jiang,
  • Kangchen Liu,
  • Huixiang Peng,
  • Jing Fang,
  • Aidi Zhang,
  • Yuepeng Han,
  • Xiujun Zhang

DOI
https://doi.org/10.1186/s12870-023-04037-w
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background Organic acids are important components that determine the fruit flavor of peach (Prunus persica L. Batsch). However, the dynamics of organic acid diversity during fruit ripening and the key genes that modulate the organic acids metabolism remain largely unknown in this kind of fruit tree which yield ranks sixth in the world. Results In this study, we used 3D transcriptome data containing three dimensions of information, namely time, phenotype and gene expression, from 5 different varieties of peach to construct gene co-expression networks throughout fruit ripening of peach. With the network inferred, the time-ordered network comparative analysis was performed to select high-acid specific gene co-expression network and then clarify the regulatory factors controlling organic acid accumulation. As a result, network modules related to organic acid synthesis and metabolism under high-acid and low-acid comparison conditions were identified for our following research. In addition, we obtained 20 candidate genes as regulatory factors related to organic acid metabolism in peach. Conclusions The study provides new insights into the dynamics of organic acid accumulation during fruit ripening, complements the results of classical co-expression network analysis and establishes a foundation for key genes discovery from time-series multiple species transcriptome data.

Keywords