Advances in Nonlinear Analysis (May 2017)
Nondegeneracy of positive solutions to nonlinear Hardy–Sobolev equations
Abstract
In this note, we prove that the kernel of the linearized equation around a positive energy solution in ℝn${\mathbb{R}^{n}}$, n≥3${n\geq 3}$, to the problem -ΔW-γ|x|-2V=|x|-sW2⋆(s)-1$-\Delta W-\gamma|x|^{-2}V=|x|^{-s}W^{2^{\star}(s)-1}$ is one-dimensional when s+γ>0$s+\gamma>0$. Here, s∈[0,2)${s\in[0,2)}$, 0≤γ<(n-2)2/4${0\leq\gamma<(n-2)^{2}/4}$ and 2⋆(s)=2(n-s)/(n-2)${2^{\star}(s)=2(n-s)/(n-2)}$.
Keywords