Advances in Applied Energy (Dec 2024)
Advancing state of health estimation for electric vehicles: Transformer-based approach leveraging real-world data
Abstract
The widespread adoption of electric vehicles (EVs) underscores the urgent need for innovative approaches to estimate their lithium-ion batteries’ state of health (SOH), which is crucial for ensuring safety and efficiency. This study introduces SOH-TEC, a transformer encoder-based model that processes raw time-series battery and vehicle-related data from a single EV trip to estimate the SOH. Unlike conventional methods that rely on lab-experimented battery cycle data, SOH-TEC utilizes real-world EV operation data, enhancing practical application. The model is trained and evaluated on a real-world dataset collected over nearly three years from three EVs. This dataset includes reliable SOH labels obtained through periodic constant-current full-discharge tests using a chassis dynamometer. Despite the challenges posed by noisy EV real-world data, the model shows high accuracy, with a mean absolute error of 0.72% and a root mean square error of 1.17%. Moreover, our proposed pre-training strategies with unlabeled data, particularly SOH ordinal comparison, significantly enhance the model’s performance; using only 50% of the labeled data achieves results nearly identical to those obtained with the full dataset. Self-attention map analysis reveals that the model primarily focuses on stationary or consistent driving periods to estimate SOH. While the study is constrained by a dataset featuring repetitive driving patterns, it highlights the significant potential of transformer for SOH estimation in EVs and offers valuable insights for future data collection and model development.