هوش محاسباتی در مهندسی برق (Sep 2022)
Dynamic Economic/Emission Dispatch with Probability Model of Wind Power with Modified Virus Colony Search Algorithm
Abstract
This paper deals with the dynamic economic and emission dispatch during a day as an important challenge in engineering. On the other hand, renewable energy provides an undeniable contribution to the energy supply. Therefore, to create an efficient model, the probability wind energy models have been proposed. In principle, this problem has several limitations and to bring it to reality, practical and nonlinear constraints such as power balance, ramp rate, prohibited zone, non-smooth cost function, and production constraints have been considered. Since these functions i.e. emission, cost, and wind models are conflicting in nature, to solve this problem, a multi-objective virus colony search algorithm (VCS) based on Pareto theory has been proposed. To improve the performance of the virus colony search algorithm, the chaos theory has been employed that eliminates the weakness of the standard algorithm, ie the speed of convergence and increased number of iterations of the algorithm to achieve the optimal solution. Chaos theory refers to the nature of complex systems with unpredictable behavior. Using the stochastic properties of chaos system, Chaos theory can improve the quality of population distribution in search space and enhance algorithm convergence function. The fuzzy decision function is also used to select the best solution from the set of solutions. The proposed model and method are applied to different systems and in some cases are compared with other methods in the articles. The results show an improvement in the performance of the proposed algorithm. The results also show that the presence of renewable resources has reduced production costs and thus increased network security.
Keywords