Remote Sensing (Feb 2023)

Few-Shot Remote Sensing Image Scene Classification Based on Metric Learning and Local Descriptors

  • Zhengwu Yuan,
  • Chan Tang,
  • Aixia Yang,
  • Wendong Huang,
  • Wang Chen

DOI
https://doi.org/10.3390/rs15030831
Journal volume & issue
Vol. 15, no. 3
p. 831

Abstract

Read online

Scene classification is a critical technology to solve the challenges of image search and image recognition. It has become an indispensable and challenging research topic in the field of remote sensing. At present, most scene classifications are solved by deep neural networks. However, existing methods require large-scale training samples and are not suitable for actual scenarios with only a few samples. For this reason, a framework based on metric learning and local descriptors (MLLD) is proposed to enhance the classification effect of remote sensing scenes on the basis of few-shot. Specifically, MLLD adopts task-level training that is carried out through meta-learning, and meta-knowledge is learned to improve the model’s ability to recognize different categories. Moreover, Manifold Mixup is introduced by MLLD as a feature processor for the hidden layer of deep neural networks to increase the low confidence space for smoother decision boundaries and simpler hidden layer representations. In the end, a learnable metric is introduced; the nearest category of the image is matched by measuring the similarity of local descriptors. Experiments are conducted on three public datasets: UC Merced, WHU-RS19, and NWPU-RESISC45. Experimental results show that the proposed scene classification method can achieve the most advanced results on limited datasets.

Keywords